metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C42.156D10, C10.1342+ 1+4, C20⋊4D4⋊15C2, C4⋊D20⋊34C2, C4⋊C4.113D10, C42.C2⋊12D5, D20⋊8C4⋊38C2, C42⋊D5⋊22C2, C20.132(C4○D4), (C2×C20).189C23, (C4×C20).201C22, (C2×C10).242C24, C4.21(Q8⋊2D5), D10.13D4⋊36C2, C2.59(D4⋊8D10), (C2×D20).172C22, C22.263(C23×D5), C5⋊6(C22.34C24), (C4×Dic5).155C22, (C2×Dic5).272C23, (C22×D5).107C23, D10⋊C4.113C22, C10.D4.125C22, C10.119(C2×C4○D4), (C5×C42.C2)⋊15C2, C2.26(C2×Q8⋊2D5), (C2×C4×D5).141C22, (C5×C4⋊C4).197C22, (C2×C4).594(C22×D5), SmallGroup(320,1370)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C42.156D10
G = < a,b,c,d | a4=b4=1, c10=d2=a2, ab=ba, cac-1=ab2, dad-1=a-1b2, cbc-1=a2b, dbd-1=a2b-1, dcd-1=c9 >
Subgroups: 1070 in 240 conjugacy classes, 95 normal (19 characteristic)
C1, C2, C2, C2, C4, C4, C22, C22, C5, C2×C4, C2×C4, C2×C4, D4, C23, D5, C10, C10, C42, C42, C22⋊C4, C4⋊C4, C4⋊C4, C22×C4, C2×D4, Dic5, C20, C20, D10, C2×C10, C42⋊C2, C4×D4, C4⋊D4, C22.D4, C42.C2, C4⋊1D4, C4×D5, D20, C2×Dic5, C2×Dic5, C2×C20, C2×C20, C22×D5, C22×D5, C22.34C24, C4×Dic5, C10.D4, D10⋊C4, C4×C20, C5×C4⋊C4, C2×C4×D5, C2×C4×D5, C2×D20, C42⋊D5, C20⋊4D4, D20⋊8C4, D10.13D4, C4⋊D20, C5×C42.C2, C42.156D10
Quotients: C1, C2, C22, C23, D5, C4○D4, C24, D10, C2×C4○D4, 2+ 1+4, C22×D5, C22.34C24, Q8⋊2D5, C23×D5, C2×Q8⋊2D5, D4⋊8D10, C42.156D10
(1 76 11 66)(2 147 12 157)(3 78 13 68)(4 149 14 159)(5 80 15 70)(6 151 16 141)(7 62 17 72)(8 153 18 143)(9 64 19 74)(10 155 20 145)(21 98 31 88)(22 45 32 55)(23 100 33 90)(24 47 34 57)(25 82 35 92)(26 49 36 59)(27 84 37 94)(28 51 38 41)(29 86 39 96)(30 53 40 43)(42 135 52 125)(44 137 54 127)(46 139 56 129)(48 121 58 131)(50 123 60 133)(61 108 71 118)(63 110 73 120)(65 112 75 102)(67 114 77 104)(69 116 79 106)(81 140 91 130)(83 122 93 132)(85 124 95 134)(87 126 97 136)(89 128 99 138)(101 154 111 144)(103 156 113 146)(105 158 115 148)(107 160 117 150)(109 142 119 152)
(1 52 113 86)(2 43 114 97)(3 54 115 88)(4 45 116 99)(5 56 117 90)(6 47 118 81)(7 58 119 92)(8 49 120 83)(9 60 101 94)(10 51 102 85)(11 42 103 96)(12 53 104 87)(13 44 105 98)(14 55 106 89)(15 46 107 100)(16 57 108 91)(17 48 109 82)(18 59 110 93)(19 50 111 84)(20 41 112 95)(21 78 127 148)(22 69 128 159)(23 80 129 150)(24 71 130 141)(25 62 131 152)(26 73 132 143)(27 64 133 154)(28 75 134 145)(29 66 135 156)(30 77 136 147)(31 68 137 158)(32 79 138 149)(33 70 139 160)(34 61 140 151)(35 72 121 142)(36 63 122 153)(37 74 123 144)(38 65 124 155)(39 76 125 146)(40 67 126 157)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160)
(1 75 11 65)(2 64 12 74)(3 73 13 63)(4 62 14 72)(5 71 15 61)(6 80 16 70)(7 69 17 79)(8 78 18 68)(9 67 19 77)(10 76 20 66)(21 49 31 59)(22 58 32 48)(23 47 33 57)(24 56 34 46)(25 45 35 55)(26 54 36 44)(27 43 37 53)(28 52 38 42)(29 41 39 51)(30 50 40 60)(81 139 91 129)(82 128 92 138)(83 137 93 127)(84 126 94 136)(85 135 95 125)(86 124 96 134)(87 133 97 123)(88 122 98 132)(89 131 99 121)(90 140 100 130)(101 157 111 147)(102 146 112 156)(103 155 113 145)(104 144 114 154)(105 153 115 143)(106 142 116 152)(107 151 117 141)(108 160 118 150)(109 149 119 159)(110 158 120 148)
G:=sub<Sym(160)| (1,76,11,66)(2,147,12,157)(3,78,13,68)(4,149,14,159)(5,80,15,70)(6,151,16,141)(7,62,17,72)(8,153,18,143)(9,64,19,74)(10,155,20,145)(21,98,31,88)(22,45,32,55)(23,100,33,90)(24,47,34,57)(25,82,35,92)(26,49,36,59)(27,84,37,94)(28,51,38,41)(29,86,39,96)(30,53,40,43)(42,135,52,125)(44,137,54,127)(46,139,56,129)(48,121,58,131)(50,123,60,133)(61,108,71,118)(63,110,73,120)(65,112,75,102)(67,114,77,104)(69,116,79,106)(81,140,91,130)(83,122,93,132)(85,124,95,134)(87,126,97,136)(89,128,99,138)(101,154,111,144)(103,156,113,146)(105,158,115,148)(107,160,117,150)(109,142,119,152), (1,52,113,86)(2,43,114,97)(3,54,115,88)(4,45,116,99)(5,56,117,90)(6,47,118,81)(7,58,119,92)(8,49,120,83)(9,60,101,94)(10,51,102,85)(11,42,103,96)(12,53,104,87)(13,44,105,98)(14,55,106,89)(15,46,107,100)(16,57,108,91)(17,48,109,82)(18,59,110,93)(19,50,111,84)(20,41,112,95)(21,78,127,148)(22,69,128,159)(23,80,129,150)(24,71,130,141)(25,62,131,152)(26,73,132,143)(27,64,133,154)(28,75,134,145)(29,66,135,156)(30,77,136,147)(31,68,137,158)(32,79,138,149)(33,70,139,160)(34,61,140,151)(35,72,121,142)(36,63,122,153)(37,74,123,144)(38,65,124,155)(39,76,125,146)(40,67,126,157), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,75,11,65)(2,64,12,74)(3,73,13,63)(4,62,14,72)(5,71,15,61)(6,80,16,70)(7,69,17,79)(8,78,18,68)(9,67,19,77)(10,76,20,66)(21,49,31,59)(22,58,32,48)(23,47,33,57)(24,56,34,46)(25,45,35,55)(26,54,36,44)(27,43,37,53)(28,52,38,42)(29,41,39,51)(30,50,40,60)(81,139,91,129)(82,128,92,138)(83,137,93,127)(84,126,94,136)(85,135,95,125)(86,124,96,134)(87,133,97,123)(88,122,98,132)(89,131,99,121)(90,140,100,130)(101,157,111,147)(102,146,112,156)(103,155,113,145)(104,144,114,154)(105,153,115,143)(106,142,116,152)(107,151,117,141)(108,160,118,150)(109,149,119,159)(110,158,120,148)>;
G:=Group( (1,76,11,66)(2,147,12,157)(3,78,13,68)(4,149,14,159)(5,80,15,70)(6,151,16,141)(7,62,17,72)(8,153,18,143)(9,64,19,74)(10,155,20,145)(21,98,31,88)(22,45,32,55)(23,100,33,90)(24,47,34,57)(25,82,35,92)(26,49,36,59)(27,84,37,94)(28,51,38,41)(29,86,39,96)(30,53,40,43)(42,135,52,125)(44,137,54,127)(46,139,56,129)(48,121,58,131)(50,123,60,133)(61,108,71,118)(63,110,73,120)(65,112,75,102)(67,114,77,104)(69,116,79,106)(81,140,91,130)(83,122,93,132)(85,124,95,134)(87,126,97,136)(89,128,99,138)(101,154,111,144)(103,156,113,146)(105,158,115,148)(107,160,117,150)(109,142,119,152), (1,52,113,86)(2,43,114,97)(3,54,115,88)(4,45,116,99)(5,56,117,90)(6,47,118,81)(7,58,119,92)(8,49,120,83)(9,60,101,94)(10,51,102,85)(11,42,103,96)(12,53,104,87)(13,44,105,98)(14,55,106,89)(15,46,107,100)(16,57,108,91)(17,48,109,82)(18,59,110,93)(19,50,111,84)(20,41,112,95)(21,78,127,148)(22,69,128,159)(23,80,129,150)(24,71,130,141)(25,62,131,152)(26,73,132,143)(27,64,133,154)(28,75,134,145)(29,66,135,156)(30,77,136,147)(31,68,137,158)(32,79,138,149)(33,70,139,160)(34,61,140,151)(35,72,121,142)(36,63,122,153)(37,74,123,144)(38,65,124,155)(39,76,125,146)(40,67,126,157), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,75,11,65)(2,64,12,74)(3,73,13,63)(4,62,14,72)(5,71,15,61)(6,80,16,70)(7,69,17,79)(8,78,18,68)(9,67,19,77)(10,76,20,66)(21,49,31,59)(22,58,32,48)(23,47,33,57)(24,56,34,46)(25,45,35,55)(26,54,36,44)(27,43,37,53)(28,52,38,42)(29,41,39,51)(30,50,40,60)(81,139,91,129)(82,128,92,138)(83,137,93,127)(84,126,94,136)(85,135,95,125)(86,124,96,134)(87,133,97,123)(88,122,98,132)(89,131,99,121)(90,140,100,130)(101,157,111,147)(102,146,112,156)(103,155,113,145)(104,144,114,154)(105,153,115,143)(106,142,116,152)(107,151,117,141)(108,160,118,150)(109,149,119,159)(110,158,120,148) );
G=PermutationGroup([[(1,76,11,66),(2,147,12,157),(3,78,13,68),(4,149,14,159),(5,80,15,70),(6,151,16,141),(7,62,17,72),(8,153,18,143),(9,64,19,74),(10,155,20,145),(21,98,31,88),(22,45,32,55),(23,100,33,90),(24,47,34,57),(25,82,35,92),(26,49,36,59),(27,84,37,94),(28,51,38,41),(29,86,39,96),(30,53,40,43),(42,135,52,125),(44,137,54,127),(46,139,56,129),(48,121,58,131),(50,123,60,133),(61,108,71,118),(63,110,73,120),(65,112,75,102),(67,114,77,104),(69,116,79,106),(81,140,91,130),(83,122,93,132),(85,124,95,134),(87,126,97,136),(89,128,99,138),(101,154,111,144),(103,156,113,146),(105,158,115,148),(107,160,117,150),(109,142,119,152)], [(1,52,113,86),(2,43,114,97),(3,54,115,88),(4,45,116,99),(5,56,117,90),(6,47,118,81),(7,58,119,92),(8,49,120,83),(9,60,101,94),(10,51,102,85),(11,42,103,96),(12,53,104,87),(13,44,105,98),(14,55,106,89),(15,46,107,100),(16,57,108,91),(17,48,109,82),(18,59,110,93),(19,50,111,84),(20,41,112,95),(21,78,127,148),(22,69,128,159),(23,80,129,150),(24,71,130,141),(25,62,131,152),(26,73,132,143),(27,64,133,154),(28,75,134,145),(29,66,135,156),(30,77,136,147),(31,68,137,158),(32,79,138,149),(33,70,139,160),(34,61,140,151),(35,72,121,142),(36,63,122,153),(37,74,123,144),(38,65,124,155),(39,76,125,146),(40,67,126,157)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)], [(1,75,11,65),(2,64,12,74),(3,73,13,63),(4,62,14,72),(5,71,15,61),(6,80,16,70),(7,69,17,79),(8,78,18,68),(9,67,19,77),(10,76,20,66),(21,49,31,59),(22,58,32,48),(23,47,33,57),(24,56,34,46),(25,45,35,55),(26,54,36,44),(27,43,37,53),(28,52,38,42),(29,41,39,51),(30,50,40,60),(81,139,91,129),(82,128,92,138),(83,137,93,127),(84,126,94,136),(85,135,95,125),(86,124,96,134),(87,133,97,123),(88,122,98,132),(89,131,99,121),(90,140,100,130),(101,157,111,147),(102,146,112,156),(103,155,113,145),(104,144,114,154),(105,153,115,143),(106,142,116,152),(107,151,117,141),(108,160,118,150),(109,149,119,159),(110,158,120,148)]])
50 conjugacy classes
| class | 1 | 2A | 2B | 2C | 2D | ··· | 2H | 4A | 4B | 4C | ··· | 4H | 4I | 4J | 4K | 4L | 4M | 5A | 5B | 10A | ··· | 10F | 20A | ··· | 20L | 20M | ··· | 20T |
| order | 1 | 2 | 2 | 2 | 2 | ··· | 2 | 4 | 4 | 4 | ··· | 4 | 4 | 4 | 4 | 4 | 4 | 5 | 5 | 10 | ··· | 10 | 20 | ··· | 20 | 20 | ··· | 20 |
| size | 1 | 1 | 1 | 1 | 20 | ··· | 20 | 2 | 2 | 4 | ··· | 4 | 10 | 10 | 10 | 10 | 20 | 2 | 2 | 2 | ··· | 2 | 4 | ··· | 4 | 8 | ··· | 8 |
50 irreducible representations
| dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 4 | 4 | 4 |
| type | + | + | + | + | + | + | + | + | + | + | + | + | + | |
| image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | D5 | C4○D4 | D10 | D10 | 2+ 1+4 | Q8⋊2D5 | D4⋊8D10 |
| kernel | C42.156D10 | C42⋊D5 | C20⋊4D4 | D20⋊8C4 | D10.13D4 | C4⋊D20 | C5×C42.C2 | C42.C2 | C20 | C42 | C4⋊C4 | C10 | C4 | C2 |
| # reps | 1 | 1 | 1 | 2 | 4 | 6 | 1 | 2 | 4 | 2 | 12 | 2 | 4 | 8 |
Matrix representation of C42.156D10 ►in GL8(𝔽41)
| 0 | 0 | 40 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 40 | 0 | 0 | 0 | 0 |
| 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 11 | 13 | 21 | 21 |
| 0 | 0 | 0 | 0 | 19 | 30 | 40 | 38 |
| 0 | 0 | 0 | 0 | 6 | 1 | 2 | 28 |
| 0 | 0 | 0 | 0 | 39 | 40 | 13 | 39 |
| 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
| 40 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 40 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 11 | 13 | 0 | 0 |
| 0 | 0 | 0 | 0 | 19 | 30 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 39 | 13 |
| 0 | 0 | 0 | 0 | 0 | 0 | 28 | 2 |
| 40 | 1 | 8 | 8 | 0 | 0 | 0 | 0 |
| 40 | 33 | 33 | 34 | 0 | 0 | 0 | 0 |
| 8 | 8 | 1 | 40 | 0 | 0 | 0 | 0 |
| 33 | 34 | 1 | 8 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 3 | 21 | 0 | 0 |
| 0 | 0 | 0 | 0 | 37 | 40 | 0 | 0 |
| 0 | 0 | 0 | 0 | 13 | 4 | 18 | 20 |
| 0 | 0 | 0 | 0 | 22 | 26 | 21 | 21 |
| 33 | 33 | 40 | 1 | 0 | 0 | 0 | 0 |
| 7 | 8 | 8 | 1 | 0 | 0 | 0 | 0 |
| 1 | 40 | 33 | 33 | 0 | 0 | 0 | 0 |
| 33 | 40 | 7 | 8 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 22 | 9 | 1 | 6 |
| 0 | 0 | 0 | 0 | 19 | 19 | 40 | 34 |
| 0 | 0 | 0 | 0 | 14 | 12 | 32 | 0 |
| 0 | 0 | 0 | 0 | 39 | 39 | 13 | 9 |
G:=sub<GL(8,GF(41))| [0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,40,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,0,0,11,19,6,39,0,0,0,0,13,30,1,40,0,0,0,0,21,40,2,13,0,0,0,0,21,38,28,39],[0,0,40,0,0,0,0,0,0,0,0,40,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,11,19,0,0,0,0,0,0,13,30,0,0,0,0,0,0,0,0,39,28,0,0,0,0,0,0,13,2],[40,40,8,33,0,0,0,0,1,33,8,34,0,0,0,0,8,33,1,1,0,0,0,0,8,34,40,8,0,0,0,0,0,0,0,0,3,37,13,22,0,0,0,0,21,40,4,26,0,0,0,0,0,0,18,21,0,0,0,0,0,0,20,21],[33,7,1,33,0,0,0,0,33,8,40,40,0,0,0,0,40,8,33,7,0,0,0,0,1,1,33,8,0,0,0,0,0,0,0,0,22,19,14,39,0,0,0,0,9,19,12,39,0,0,0,0,1,40,32,13,0,0,0,0,6,34,0,9] >;
C42.156D10 in GAP, Magma, Sage, TeX
C_4^2._{156}D_{10} % in TeX
G:=Group("C4^2.156D10"); // GroupNames label
G:=SmallGroup(320,1370);
// by ID
G=gap.SmallGroup(320,1370);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,232,758,219,184,675,570,80,12550]);
// Polycyclic
G:=Group<a,b,c,d|a^4=b^4=1,c^10=d^2=a^2,a*b=b*a,c*a*c^-1=a*b^2,d*a*d^-1=a^-1*b^2,c*b*c^-1=a^2*b,d*b*d^-1=a^2*b^-1,d*c*d^-1=c^9>;
// generators/relations